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Structure theorems for the discriminant, A(wz), of
Hill's differential equation are developed by means
of interpolatery function theory (cardinal series
representations). A method of solution of Hill's
equation is developed yielding an asymptotic expamn=
sion of the discriminant for large |w| with errer
term O(rmlig). Asyniptotic expansions for the eigen=
values )‘n’ )‘in for large n are obtained with error
ternms O(n‘7). Relations between the occurrence of
the coefficient function in Hill's dif ferential
equation are established. A discriminamt=like func-

theoretic structure result is obtained.

¥The research reported in this paper constitutes the
doctoral dissertation of Mr. Jagerman. It was carried
out under the direction of Professor Wilhelm Magnus.
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I I troduction

The differential equation
y(x) + {n » g(x)} y(x) = O, (1.1)

in whiéh g(x) is a bounded periodic funetion of period n and mean value zZero,
is called Hill's equation. For a discussion of the general theory, see Refer-

ence 1, and for an investigation of the discriminant, see Reference 2. Let
yi(x), yg(x) be the fundamental set of solutions of Equation (1.1) defined by

y'l(o) =1, yi’l(é) = 0, (1.2)
yalo) = 0, yra(e) =1,
then the descriminant is defined by
A(\) = yy(n) # yraln), (1.3)
Often it is convenient to set \ = w? so that A(A) = A(wf),

The paper consists of six parts. Part II develops two general theorems con=
cérning the well-known cardinal series of interpolation, The Paley<Wiener
theorem on the Fourier integral representation of functions whose Fourier
transforms vanish outside of a finite interval is established on the basis of
Theorem I of the cardinal series interpolation., An explicit expression is
given tor the Fourier transform. These theorems enable the development of ex-
plicit representations for the diseriminant in Part III. In Part IV solutions
asymptotic for large lwl of Equation (1 .1) are developed, Hill's equation may
be rewritten as a Riccati equation. By means of a perturbation procedure ap-
plied to the Riccati equation, an approximate solution is obtained. This ap-
proximate solution is then employed to suggest certain changes of the depend-
ent and independent variables to effect a basic transformation of Equation.u 1).
The transformed equation is then solved by rewriting it as an integral equation
and employing the process of successive approximations. The solutions thus
obtained are asymptotic in w, An explicit asymgtotic development of the dis-
criminant is given with an error term of O(iw

The infinitely many values of A for which A(\)? = | are all real and constitute
the set of eigenvalues of Equation (1,1). The differential equation will have
gsolutions of period n only for those values of A for which A(\) = 2, and solu-
tions of period 2n only for those A for which 5(\) = = 2, In Part V certain
theorems are proved concerning the form of the discriminant which, together
with the explicit asymptotic development found in Part IV permit the determina-
tion of the asymptotic expansions of the eigenvalues, The first four

terms of the expansions are given with an error term O(n~ 7.



Part VI considers the question of double zeros of A{(wz) ¢ 2 and the c¢orrespond-
ing conditions that g(x) be of peried n/2. Two theorems are proved, one of
which is established on the basis of an interpolation procedure providing a
representation for a certain discriminant-like function D(aw?).




The cardinal series3 is a series of the form

(2.1)

Interpolation by means of the cardinal series is provided by Theorems I and
I1 below.

Theorem I. f£(z) is entire (z = x + iy),

A(y)

h

max  Jf(x + iy)l
“"® < X <€®

A = oY n 50, 15 s e,

The cardinal series converges uniformly in évery bounded closed domain of the
z=plane.

Theorem II. £(z) is entire

A(y)

|
&

1f(x + iy)t,

A(y) =

N
Q
—~
®

2
@ £ ( J [£(38) + (2=30)2'(n)].

The cardinal series cenverges uniformly in every bounded closed domain of the
Se'pl.&ngg



The proof of Theorem I employs the fundamental function sin nY while that of
Theorem II employs sin2 n%, otherwise, the proofs are completely parallel.
Further, it is clearly necessary to prove Theorem I only under the supposition
h = 1 since the extension of the theorem to interpolation at the points jh
follows on replacing z by z/h.

Proof. Consider the integral

1/2ni‘j;N (2= z)51n % s (2.2)

()

#

in whieh @N denotes the Nth of a sequence of paths which are squares in the

%=plane (¥ = £ + i7) and whose corners are (N + 1/2)(+ 1 # 1). For the im-

plication to6 the right, it will be sufficient to prove that under the condi=
tions of the theorem

un Y < o, (2.3)
Now

Since the singularities of the integrand occur at ¥ = 3, ¥ = + j (J integral
or zéro), the calculus of resiaues yields immediately

(2.4)
from which the cardinal series representation of f£(z) follows. Let
I(N) = Il + 172 + 13 + Ih (2-5)
in which
1 (N+d :
Il!s_]:'-e ) ——Lt‘:j-;_z—! icjn,€=N+-}, (2_06)

2ni J_N-} (%-2)sin n¥

S U G B (9 v
27 i fw Gosm g &Y h

St S (¢4)

2n1 = idn, £ = =N -
2nd Jyed (%-3)8in ng ian, & = N -4,

-
L¥)
.




_ 1 rNE B(Ned + i) A
===/ 7 === idn .
21‘[1 ; -N-% (N"% + iﬂ"z) Sin (N*% * 1.7])

< . N+%
2];! P A( T\) - dﬁ,
J N=% IN+3 + ine2)|sin n(N+d + in)l

[Nk + dneg) > Nk ¢ ang < el > [Ned < el
Choose N so large that N+¥ > izi, then

IN% B A(%) — dn,

l iA" . ]
Lt = -N-} lsin n(N+} + in))

lain & (N+d + in)l = _e™0 + 7™ >jeftin!,
2

N+3

et | e A(n)dn,
N+g =iz) 7N

part
e
A
A

The following well-known lemma will now be employed.

lemma. f(x) bounded for all x, lim f(x) = 0 =

o Xde
r\
f £(x) dx = 0.
Jo

, ‘E
v
>

(2.7)

(2.8)

(2.9)

(2.10)




Proof. One has _
1 2 , 1 /¥ _ 1 <3 , ) . i e
1 M eax- & f fx)ax + L [ #(x)ax, 0 < <. (2.11)
r Jo Mo A Jl

Choose u so large that |£(x%)| < e/2 (¢ > 0) for x > p, then
1 . 1 :
I3 f £(x) ax| < e/2. (2.12)
‘i

Since f(x) is bounded,; one may choose \ $o large that

- S|4 _ L . o
13 [ t0 & <ers, (2.13)
A Je
and, hence, the lemma follows. Applying the above lemma to Equation
(2s 10), and using the condition A(n) = ofe™ IM1) of the theorem, one has
No® =

The investigation of the integral I3 follows exactly the same pattern as for
I1 above, hence; one also has

Noe

The integral I, is given by

fN+% _ f(E+ 3(N+R)) dE. (2,16)

Ta®5 Py N} {€ + 1(8+3) - alsin n(g + 300D}
One has

|g + 4(N+3)-z| = |E + 4(NeB)| - 13| > Ned - (3], (2.17)
hence

%2l < f:i FRETRFTErIAD (e
Also

| sin 7§ + 10| = é(gu(N,*ﬁ') . (M) - (2.19)

%gn(ﬂ*i)(l - en(2+1)y, 3 . e~n(2N+1) >1-e" >0, Hence




<7

Jsin n(z + i(d)| >1-e~"  on(N+d) | (2,20)

"o

The integral I is now bounded by
1T = Ll emt(Md) gy 2L (2.21)
n(l=e™") it RNEY
Thus; by the conditions of the theorem,

lim Iy = 0. (2.22)
Noa

The investigation of the integral Ih does not essentially differ from the
above investigation of I2 so that one has also
Noas

The implication now follows: For the implication to the left, let

(2.24)

The s; are entire functions, and, since the uniform limit of a sequence of
entire functions is entire; it follows that

£(z) = ‘(2925)

is entire. It is clear that

8y = 0(1z1° ") = o(eniT1), (2,26)
and hence,

£(z) = o(e™T1), (2.27)
In Equation (2.25) set 2z = ¢ (7 integral), then

ap = £(1), (2.28)

hence,




i) | (2.29)

=

Thus the implication to the left follows. The sequence of functions

sin n(w=3)/n(w=j) forms an ortho-normal set over (-# € w < «). The proof
follows 1mmed1ately on application of the Parseval theorem for Fourier
:l.ntegra.ls « Since

= j-_ﬁe du, (2.30)

it follows that ;/\/Zﬁ e (1uy < n) is the Fourier transform of
sin n(w=j)/n(w-j). Hence,

[e _s;_nﬂ_fa);,jlﬁi §i,n_7i(w:1£) U fﬂ du(k=]) 4. _—
j-a n(w=3) (=) W= Jas e au, (2.31)
- O’ K ; j‘,
= 1, k s j,

» ) ( sin n(w=j)

Consider the closure in L2 norm of the set of functions \ m(w=3) J == .

It. follows from Theorem I that if f(w) is entire, f(w) = o(euml)(m = q + iu),
and f(a)el2(=w, ®); then f(w) is in the elosure.

The well<known theorem of Paley=Wiener may now be established,
Theorem III. f(w) is entire (w = a + iu), f(w) = o(eMIitl), f(a)eLa(-- -)

& JFe(-n,x) ) f(o) = f o1 F(u)du, and, in fact,
J o

= (2.32)

and, since f(w) is in the closure of
sin f(w=3)

one also has




S legn? < .. (2.33)
J===

Direct substitution of the expression for F(u) given in the theorem inté the
Fourier intetral shows its formal validity, thus it is only necessary to show
that

1 - .

— F L ,_UN,.., . R
s 2n [ e 5 £(j)e=UJ dqu = 0. (2:34)
Ms= J =f j=M
Now

Application of the Schwartz inequality yields

1o N 2
5 f slan $== p( 5)¢1u3 du' (2.38)
-n N

Lon N 2
< 2n f [ petud | qu,
J aft

J=M

N 2 :

The limit zero is obtained on reference to Equation (2.33). By the same
argument one also has

1
1im Z{j glwu :‘_’ *** £(j)e=iuj gqu = 0, (2.37)
Mo N =M
Noe

and hence the implication to the right is established. For the implication

to the left, consider

f(w) = fﬂ el F(u) du (2,38)
=N

in which F(u)eL (-nyn). Because of t.he finite interval of integration, f()
is clearly entire. "Also since F(u)sL?(-n ,M) one has, by Plancherel's theorem,
that £(a)el2(~e=,e It remains only to show that f(w)=o(em'®!), However, the
Schwari inequality applied to Equation (2.38) immediately yields f(w) =
o1~ 2 gnipl ), and hence the implication is established,
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rties of the Discriminant and Cardinal Series R

resentations

Theorem IV. The discriminant A(a?)(@ = a + iu) is an entire even function of
© satisfying A(w?) = O(em B!) for all large lw!.

A theorem of Magnusl and Bernstein's inequalityd immediately yield Theorem IV,
However, it is easy to prove the above results directly.
Proof: Equation (1,1) may be written in the following integral form.

F(x) = ¥(0) cos wx + y1(0) ﬁ%m_x_ N

10

€ i

P x |
[ sin w(x=u)g(w)y(u) du.
Jo
The functions yy(X), yp(x), therefore, satisfy

Efr

<
f sin w(x=u)g(u)yy(u) du, .
Jo

' x
e e %L sin o(x=u)g(u)yp(u) du. (3.3)

w

Since
lcos wx| < X8l N
|sin anc' = gzluflg

ane has

; X { Yt
|7y (x| seP f Wy () e, (3.5)
' " Zo

x r
e e L l%i Jo gl&l(xu)'?g ()] du, (3.6)

in which M is a bound on g(x). Thus,




g(x) <M for all x.
The following lemma will now be employed.

ly(x)] <CeXY + E j’x eY(X=1) | y(u) | au
Jo

C»0,y>0, E>0
= y(x)! g ce(Br)X,
Proof. Let
W= E jx eV(X=0) | y(u)! au,
0
then
|7(x)| € CeXY + W,
W' = Ely(x)] + vW < CEe™¥ + (E + )W,
w(0) = 0.

One now has

4 [o=(E+y)x W] < CEe*BX,
d_! ) T e

and, hence,

W< ce(B*Y)X _ corx,

The lemma follows from Equations (3.9) and (3.13).

lYI(JC)i < g(M/MM + ‘lL&I),x;v’

1720 < i%a_"' o olM/10t +ip)x,

® |
From Equation (3.3) one obtains

¥'2(x) = cos ox - f * cos w(x~u)g(u)y2(u) du,
) Z0

(3.7)

(3.8)

(3!9)
(3.10)
(3.11)

(3912)

(3.13)
The above lemma now yields

(3.14)

(3.15)

(3.16)
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Hence,
frip(a)] < Xl 0 f W (X0 go(u) | du, (3.17)

Equation (3.15) now yields

91,0} 2 eMAor + jul)x (3.18)
Thus the discriminant satisfies

18(w?)] < 2o M/l + 1l (3.19)

and Theorem IV is established. Since; from Equation (31.k)

. - X M +
| [o s1n a(x-0)g(ulyy(u) du| ¢ w10t DX (3.20)

and from Equation (3.15)

![‘xcés ox-u)g(u)y;(u) au;‘l‘ < ‘——%a‘ xeM1wy + \sm)x, (3.21)
J 6
,A'(wz) - 2 cos nw| < 7"}: “(M/' o+ “”) (3.22)
®

The following theorem has now been established.

no + 0(wiLle miw for a%l large |wl. Actually, the

Theorem V. A(w<) = 2 ¢
ore I{ 1 s for all w since A(w¢) is uniformly bounded on
&

estimate of Theorem
the whole real w-axi:

The function @(w?)-8(0¥/a? is clearly entire and O(1w1™%e™!#!) thus, the con-
ditions of Theorem I are satisfied with h = 1 and hence one has
Theorem VI, 8(w?) = 4(0) + w? 2: - 8¢ )°A@) sin n(e-3)

= 2 e

The series converges uniformly in every bounded closed domain of the w-plane.
Similarly, by Theorem V, the function A(w ) = 2 cos nw satisfies the condi-
tions of Theorem I, Hence, one has the following theorem.
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Theorem VII, A(w?) = 2 cos fw + fi; {a(32)=2(=1)3] & .
7=

The series converges uniformly in every bounded closed domain of the w=plane.

Theorems VI and VII provide representations for the diseriminant in terms of

its values at the integers. It is now possible to obtain Fourier integral
representations of A(w¢). One has

Theorem VITI. A(w2) = A4(0) + [ olUo F(y) du,
=N

F(u) =

Proof. The uniform convergence of the Fourier series for F(u) permits term-
wise integration. The theorem now follows on substitution inte the integral
formula for A(«w?) and reference to Theorem VI.

The . functlenlh(m?)=A(0»/m2 e L (=®,®), and by Theorem V, the function
a(w?) = 2 cos nw also belongs to L2 (-o @). Hence, they are in the closure of
the set of functions

sin A(w=3j)

The Parseval relation may now be applied to obtain the following theorems.

Theorem IX, f {M} Z{A( )"A(_OZ} 2’

Q)

Theorem X. | {A(w?) - 2 cos nm}

Theorem III (Paley-Wiener) may be applied to the function A(«?) - 2 cos na,
One obtains

. , n
Theorem XI, A(af) = 2 cos na *‘f el g(u) qu,
J=n

-




A result of Poisson type may be derived from Theorem VI, namely,

o somam 117 [ A62)-8(0)  4u = 5 = 8(3%) , tau(c a2

Theorem XII. | RLLINTL dus= 2 ) i+ #A(0) - L= 4(0),
J«w w? =1 ¢ 3

Proof. The uniform convergence of the cardinal seéries in Theorem VI directly
yields (a > 0)

jﬁa A(e2)-8(0) 4o « §— M32)-8(0)

@° JE==

w=d) 4. (3.23)

Consider

(3.24)

A dw:l . (3.25)

£, (3.26)

Integration by parts shows that

‘ f si:(:ij)d de + L “sin Zi8d)

hence,

| RI <_.+ C : la-3|32 (3.27)

The quantities C, C;, Cp are constants uniform in a and j.

let a = n + % (n integral), then
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o - (3.26)

Since

Sl e Y s i 3 :.2
(a=3)32  a3? 225 2any) .29

it follows that

(:.53_ « 0(1/a). (3430)

“j‘%‘TfT‘?%: (3.31)

2N (3.32)

Thus
R = 0(1/a). (3.33)
Equation (3.33) establishes

[,
o =W 2

origin ha.s t.he form

Ma?) = 8(0) + u? éiégl ‘.. (3.39)
Hence, the term j = O in Equation (3.3L) is #4"(0). Use of the well-known
expansion B

2
&% (3.36)

now yields Theorem XII,




Theorem II yields representations for A(w?) in terms of the values of A and
A' at the integers. The theorem may be applied as above to the functions
{A(w2)=A(0)/@2 and A(w?) =2 cos fw with h = 2, The results are embodied in
Theorems XIII and XIV below.

Theorem XIII. _ -
Aa?) = 8(0) + o2 S | SEAN/2 (@=23)1"F 0 5y A(L3°)=(0)
o w : /2 (w=23) | J 132 .

Jé;ﬁi “
+ ($2081(132)

Theorem XIV,.

[A(L32) «2+(w=21)238" (L32)].

So= | /2 (e-23)

- sin_n/_awg,)T

In Theorems XIII and XIV the series converge uniformly in every bounded closed
domain of the w-plane.




Consider the substitution

y(x) = i fudx

in Equation (1l.1). Since
y'(x) = ivy,
(%) = iwy = wly

one obtains the Riccati equation
W' = w2+ @2 + g =0,

A perturbation form of solution of WKB

xpansion for the

(4.2)
(k4.3)

(l4sh)
t?fpea will be obtained by the introduc=

tion of a small perturbation parameter € as follows

giw' = w2 + 2 + g = 0.

Equation (L.Lh) is obtained from Equation (L4.5) on setting & = 1.

LT R I
thén

"ﬂ = (@2 + 8)é ’

wr s 3 _E_s .

w+g

Thus

we (of + g)% + %6l Zgiz + eee o

Setting ¢ =

R, ;
y(x) ¥ (o2 + gt e,14 (o™ve)%a

(L.5)
Let
(L446)

(4.7)

(L.8)

1, and substituting in Equation (4.l) yields

(L.9)

The above procedure renders plausible the approximation of Equation (L.9).
In order to obtain exact results, another method is required leading to the

same approximate solution but permitting the estimation of error.

For that
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purpose, the following change of variables is suggested by the form of
Equation (h 9). Let

7% 5
7 j; (0 + g)2 & (Le11)

in which w is so large that @ + g > 0. Considering h as a funétion of 7,
one has '

-; = Kol + g)° =5/4 g'y + (2 + 8)5% ¥s (h.12)
72/
4 & (m2+g) -1 g1y + Hw2eg)® /s gy + (aeg)=3/k g, (Le13)

dn?

Thus Equation (1.1) is transformed to

2)
2_’23+h+msg, (b.1k)
an®
Pe-3—8 .5 _g?2 (b.15)

(mz*g)2 16 (o2+g)>

For the purpose of approximation, it is best to rewrite Equation (4.1ll) in
integral equation form. The required integral equation is

, n
n(n) = f(n) - j sin (n-u)K(u)h(u) du, (4.16)

<0
Q(n) = h(0) cos n + Q] ~ginn,
L
K(n) = F(x).
For the determination of y;(x), the initial conditions on h(m) are

n(0) = (o + )}, (427)

dn |

: =5/
- 4 9’2—"‘ a) - ’
T"l].q.o }ﬂ( e, 3



in whieh
g(0) = a, (4.18)
g'(0) = B,
The function hy(h) is defined by the initial conditions of Equation (L4.17).
One has from Equation (h.16)
hi(n) = /1(n) = f sin (n=u)K(w)hy(v) du, (4:19)
)

L) = (o? + a)t cos 1 + (a2 + )5’V sin 7.

Similarly for the deternm
the initial conditions

ho(0) = 0, (4.20)

ination of ya(x), the function hy(m) is defined with

dh, | , 3
2| = (a?+ o)k
dn | 0

The function hy(n) satisfies

hp(m) = Lot = [ s1n (rudkCudng(a) au, (k.21)
=0

‘ by
Lo(m) = (a2 + a)7% sin m,
Equations (L4.19) and (L.21) may be solved by successive approximaticns. De-
fine the sequences {Iy}c , {Mylg by

&
L(n) = - f sin (n-u)K(u)Lgoy(a) du, (1.22)
“Q

Lo(n) = A(m),
and
; 'n
M (n) = —f sin (n-u)K(u)Mg.1(u) du, (1.22)
£ <o

Mo(m) = Ay(m),




theﬁ. .

() = = 1o, (.24)

hy(7) = g M)« (4s25)
From Equation (4.15) one has

F(x) = K(n) = O(a"L) (4.26)
uniformly in x. Since, from Equation (L.19)

o = 4 = 0(ud) (b.27)
uniformly in w, one obtains, by induction on Equation (L.22),

o3 TK

Iy = ‘Oi(wihk*% IEL" ) . (k+28)
Also since from Eguatien (L.21)

Mo = Ly = O(w~D), (L.29)

one obtains, by induction on Equation (L.23),

Hk s O(m“hk’i % ) . (k.30)
From Equation (L.10) one obtains

y(x) = dgr@® s M ne (et E (k231)
Thus in order to determine the discriminant, "i‘t;« will be necessary to evaluate
dhy/dn. Equatien (L.2h) gives ‘

— — ./2
dn fsgdn (L.32)

From Equation (4.23) one obtains

ﬂ
—k . g.f cos (’r]su)K(n)Hk!l(\l) du. (b.33)
Jo hT




=2]a

It follows that dMy/dn obeys the same order relation as My itself, that is,

an
The function yy(n) is given by

yi(n) = (o + o)°% RO (4.35)

M jo («° + g)2 dak ,

Also the function Yé(ﬁ) is given by

o - s 3 2. dME(T) )
(7 + (w3 KD (1.36)

ya(n) = ~dp(atea) S 5 dn
: et =0 9

Define sk(mg) by 20 (%)
A 7 3 = 5 A =6/ - ' ” d‘M & i
8 (e?) = (W) i@ - B @)« Bt 2,

then the discriminant A(w?) is given by

8(a?) = 'f;iﬁ’i?4 8l a?). (L.38)

Equations (h.28), (4.30), and (L.34) show that
olef) = O(abk ), (1.39)

From Equation (L.35) one has
7 = 0(w), (Leko)
hence,

y(w?) = 0(w 3% /k1) . (L.h1)

The sum — 5, («?) may now be resdily estimated. Thus
enel




One may now state the following theorem,

- N . Lme A . ) o
Theorem XV. A(ma) =) ék(wz) + O(|m|-3n-3) for all real o y 0: The first
g_o
three & are given by

55 = 2 cos 7, (L:k3)

30

61 = =sin f K(u) du, (lsokk)

“0
Szif
“0

Since

. [ (o? + g} ag, (4.46)

-0

3

e ] d ) ) )
j sin (meutuy) sin (u-uy) K(u) K(vy) duy du, (Lek5)
L)

one has
S -
u=ax + dot j'

-0

e X 7 (X
+ 2y f g3E - S f gk + o(j w19,
< Jo

16 . o =

gl - o~ f g?dg (Lbs7)
) o

and, hence, 7 is given by

, : 2 < e (T . . (N
n=no - %‘w':" f 524€ + %6@’5 f gdg - 1-%8@’7 f gl‘c_lg (L.L8)
) <0 = [¢] <0

+ o(lwl™).
One now obtains for §,

8, = Ao cos nw + B, sin no + 0fwt™), (L.L9)



- » ;
P % Jf e+ o) - 3 J[ & dg < o5 + é% " g . o

For the computation of &y, the change of variablés given by Equation (L.46) is
used in the integral. Thus;

T 2 S . 3
f K(u)du = f #(x) (£ + g)¥ ax. (1.50)
[} 40

From Equation (L4.15) one has
Fx) = e + Gae' + 2026 - @ o2+ FawHot s wus)
o( w19
and since
(wg*g)% =0+ 3ol - é 5732 + i%m‘SQB = i%gm‘7§h + 0(1wi™?), (b.52)
one obtains

P (a2eg)? = derard + (Qagns Sg1DaS - (4.53)

(%%82," * ggss'z)m*7 + 0(1w) ™).

Thus )
o 16 Jo 3 o
Also w3 r
sin M = sin no = ‘—g-' 2d€ e CcO3 M + O(lml's) (4.55)
> Jo

and hence

8y = Ay cos mw + By sin ne + Q(l@!’9), (4.56)
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The determination of the asymptotic expansion for 6, is somewhat mere involved.
After using the change of variables of Equation (k. Eé), Equation (L.L45S) becomes

S _ A ‘, 3 _ o
65 = j f sm(ﬁ-u*ul)sm(uiul)F(X)'(‘c-sz*g‘(x))5'(2;1) ‘ (4.57)
6 6 ]
(wPrg(xy)) Baxdx.
Using a trigonometric identity, Equation (L.57) may be written as followss

%f f cos(M=2u+2uy )F(x)(& +g(i));*?F(il)‘(wé*z(ij)%dxldx (4.58)

n /A ; 3 o 3
-feos [ fo P(x) (Peg(%)) BF(xy ) (w2eg(x))) Baxyax.
“#Q <G

Integration by parts and Equation (L.Sh) establish that

nt 2
A TR )<m2+g(x1)>%ax1dx-§ F(x)(w +g<x)>%ax (4.59)
‘Io o 1

= 0(@‘"1*0).
Thus 7
5 = % f " f xcos(f'ﬁ—Zu#Zul)F(z;)(@2+g(;g))éF(xl)(aoz#g_(xl))%dxld; (L.60)

+0(0™ ')
From Equation (L.L7) one has
n=-2u-+ 2u, = @(n=2x+2x,) = arlf gdg + 0(1w)73), (h.61)
= = x
1

Thus ’



I Y A S T
sos(f-2ur2uy ) = [l-%w 2'(J[ gda)]cos o n=2x+2x,) (1s.62)

+ ot f gdg sin m(ﬁ-a?i*éxl) + 0(lwi=3).
Equations (L.62) and (L.53) yield
cos (Fzus 20 F(x) (u2vg () B xy) (e a1y ) - (4.63)

[1%&"(")5"("1)“"6 ) {‘%ég(n)g“(xl)e"(i% %ﬁ"(ii)zgn(i)

o[ § seee » £ e (0%g1(xy)|

1 | F% \2 ;‘ .
+ = g"(x)g"(xy) | '[ gd | w's] cos o(n=2%+2xy)
32 V1 4y a ,

3 7 x ]
+ '-1 8"(x)3"(3§1)‘@-7 / gdg ° sin @(ﬂ623t+2i1) + o(1e\™?).
16 : o1

On the assumption that g(x) has an integrable third derivative, one may apply
integration by parts to obtain ¥ &Pl

b < X 3 5 » '
jo fo (35 g(xy)g"(xy)g"(x) + = gl(_xl)gn(x)) (L.6k)

+ ‘5% g(x)g"(x)g"(xy) + 6—?4 8'(1)25“(31))

e e
+ %g!'(;)g"(xl) ( _4’ 545)' }cqs @(n-2x+2x, )dxydx = o(1ev7d).

Thus
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. ;A X
65 = 3%‘@'6 fo L 2" (X)g"(xy) cos w(n-2xs2xy)dxy dx (1.68)

vy 7] f g"(x)g"(x1) (j Ang) sin w(n-2x+2x; )dx; dx

+ 0(‘ (o’)lig) B

Since
[ xg"(atl)cvos (n=2x+2% )dx, = 3o~lgh(x) sin ne (L.66)
Jo 4
-3u-1g"(0) sin w(n=2x) - im‘l f ng"" (%y)8in o(n=2%+2x1) dxy ,
one has . -°
65 = Z-]):mi? sin ne Eg"(i)édx -]—&m “(o)[ g'(x)8in w(n=2x)dx (L.67)

1 .0 (" X L
- =T f g"(x)dx f g™ (x1)sin w(n-2x+2x,)dxy
6l 6 ‘0 ) S

+ %w 7f° “ g™ (x)g"(xy) ([x

Integration by parts yields

gd{) sin m(n-2x+2x1)dxldx + 0(\&\'9)
1

n .
,f g"(x)sin w(n-2x)dx = 3ot [ g" (x) cos w(n-2x)dx, (h.68)
Jo

O

One now assumes, additionally, that g™ (x) is of bounded variation, Then, by

a well-known lemma (this follows directly from the representation of a function

of bounded variation as the difference of two monotone functions, and the sec¢-
ond mean value theorem),

-1 ]
] g™ (x)cos w(n-2x)dx = O(1w\=t) (4.69)
(o]

and, hence,




gﬁ ™ g"(e Jf g"(jé)éi.ﬁ m(naéi)d_x = ()(|m|‘9)_ (ho?O)

In the first iterated integral of Equation (L. 67), it is advantageous to inter=
change the order of integration, Thus

1t X
f g"(x)dx j " (x1)8in w(n=2x+2x;)dx; = (4.71)
Jo Jo

. g
f ‘"(xl)dx [ g"(x)sin a)(n-2x+2x1)dx.
JO X3

] g"(x)sin o(n=2x+2x)dx = ko™ g"(o)cos o(ft=2%1) (4.72)
x)
« 30"1g"(x7) cos nw

- iwéi‘l;; g"(x) cos m(n-2x+2x1) dx.

Thus

n FX
g"(x)dx f g™ (x1)sin w(n-2x+2x;)dx; = (4.73)
Jo

2)-

"::“—«”:-’88"(‘9) f n‘s‘" (x1)cos w(n=2xq)dxy
w . o >

. N
— r—--é'ecgg ne jg'" (xl)g"(xl)d;
<]

+ ™ f g" (xy)dxy jns"' (x)cos w(n~-2x+2x3)dx.
128 xn 1

Since g"' (x) is of bounded variation, one has
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n

f g" (x31) cos w(n=2xy)dx; = o(twl™d), (laTh)
Jo

iR P
j g™ (x) cos w(n=2x+2%;)dx = 0(lwl l),
also

R

f g™ (%1)g"(xy)dx; = O, (4s75)
“0Q

Hence, the entire integral expression on the left hand side of Equation
(4.73) is 0(1®1*?). One now has

55 = 2Lo-Tsin ﬁa)r g‘"(i)éax (L.76)

1 (M. [(* s 3 i -
* -375@'7j’ g"(x)dx fo g"(xy) jx lgds)sin w(n=2x+2%1)dxy + O(1w1™?).

J o
Applying integration by parts, one has

"X rx Ca * X
f g"(xl)v( f gdi) sin w(n-2x+2%;)dx, = #0"1g"(o)cos @(n-Zx):[ gdg (L.77)
<0 ) xi B ) 7 0

. X x | T
+ Jol j {8"' (x9)| f gdg| = g"(xy)e(xy)) cos w(m-2x+2x,)dx; .
o ) |

From the bounded variation of

.
g™ (x1) ( f sdi) - g"(x))e(xy)

one has

"X X
j x{g"' (x1)( j gdg) - _g“(xl)e(xl)} cos o(n=2x+2x))dx, (4.78)
-e B T ) .

= 0(w"1)
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Hence
A 1 .7 M 2.
§ = Sl gin flw | g"(x) dx )
2 " g sim e Jﬁ g"(x) (4:79)
1 & o ) s X 3
+ g=Bgn(o) J[ g"(i)fj( gag]cos w(n=2x)dx + 0(1w)~?).
6l Jo 0 ]
Since
‘rx ’
g"(x)| | gdg|
6 !
is of bounded variation, one finally concludes that
65 = Ap cos nw + By sin ne + 0(1w}™9), (4.80)

A2 = 0Q,
3, A K.
Bs = _._—];;f g“zdé(b.?

Theorem XV and the above determination of 8,, 81, 6, now yield the following
asymptotic expression for the discriminant.

o
N
"

Theorem XVI. g™ (x) is of bounded variation over (o, n)

= A(w?) = A cos nw + B sin ne + 0() ™),

n [ -1t R ‘
(M2 1 6 . |2 .[ 2. J{ 3 ;‘[ 2 J{ 24| ™8,
A=2-2X[] g% S aE 34g- 1 d 4
A=z 6h(j; g -E) ="+  3§ Jy g dg Jo gd§ 58 ) & El & 5

-t n RS
o8 + 2 ° -3 + .—.:!'- ‘ 12 - 1 23 £ 25

The form of A(mz) in Theorem XVI may be greatly simplified
VA2 + B2 = 2 + 0(01"9), Thus one has

n observing that




W

Alw?) (4.81)

L -3
W
€

[

may be remarked that the coefficients of the powers of w in Equatlon (L4.81)

¢ final, that is, extending the asymptotic expansion beyond 0(1 &} =%) does
t change the coefficients already féund.
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V. Asymptotic Expansions for the Eigenvalues

It is the present purpsse to6 determinie expansions asymptoti¢ for large n of
the elgenvalues in 15 Xz— for which Equation (1.l) has solutlons of period
n and X for which Equation (1.l) has solutions of peried 2n. To
this end t1]1'e exp&:l.clt asymptotic expansion of the diseriminant given in
Equation (L4.81) will be employed., However, it will be necessary to establish

an additional structure theorem for the diseriminant.

one has
A(@?) = A cos nw + B sin fw + O(w“z"'h) (5s1)

in which there are comstants agy, bpj.1 S0 that

(5.3)
It follows that A(m2) may be put into the form
a(a?) = VaZ + B2 cos m + 0(a"2v-) (5.L)
in which there are constants Cpj.j so that
v+2 5
0= 0+ Y oy e 2t (5.5)
2

The constants C 241 are, of course, functionals of g(x) and are clearly in-
dependent of v. °

Corresponding to the eigenvalues Mn-1> )’Zn’ A 2 1, x 2n
“2n.11 %y ' 2n-17 w'on ,respectlvel_y, in whigc g‘ It is knovm thatl

:in-l’ @ a;; nn:hzeros :i AMaw?) - 2, and @'Zn .1, m'zn are the zeros of
Z, us the equations

VA2 + B2 cos np = 2+ O(w=2v-b), (3.6)
A2 + B2 cos ng= =2 + O(u™RV7b (5.1

serve to determine asymptotic formulae for wpp-], o'sn.1y 0'2n, respec-
tively. A theorem of Hochstadt7 states that if 8(“? haa ger}vatives up to
order v, then



632 &

Wpn=opa1 = 0(n7V=2), (5.8)
! 2.'1‘71;&' Shel F O(n"viz) . (509)

The following theorem may now be established.

Theorem XVII. Let g{¥)(x) exist and be integrable for v > 1, then there exist
constants Cy;_ o, independent of v so that

Ma2) = 2 cos 1o + O(w2V),

y#+2 And
- = 4 «25%]
P =+ ) C‘?jal ® J .

3=2

Proof. In view of Equations (S.4) and (5.5), it is necessary to prove only
that

Va2 + 32 =24 0(w2V-h), (5.10)

Consider Equation (5.6). Llet w > 2 > o in which Q is a constant, and let
inequality

w>Q (5.11)

is contradictory to the known existence of the infinitely many eigenvalues
®on.1» W2n Since

a2 +82>0. (5.12)

2+ ‘0*(@:’2"‘%) - f cos np > 2 + o'(m"z" ’h) s
The inequality

Va2 + B2 > 2 + KoV, o> (5.13)

implies the existence of two solutions, say ¢j, ¢2, of Equation (5.6) in the
neighborhood of every sufficiently large even integer 2n. Let

Va2 + B2 24 ¢, (5.14)

¢ > Ko™2v=h, o> g, (5.15)
and let Equation (5.6) be rewritten in the form
(2+¢)cos np=2+d,ds= 0(g2veh) (5.16)

also, set ¢ = 2n + & where 6 is small, then, since cos ny = cos n8, the two
values of & are given by
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g4+ o(E), (8.17)

QL
[

- st o),

o
n
i

.1 e-4d
B -5 .

1+ 3¢

The above values of &y, 62 were obtained from the expan31on of ¢os nb in the
neighborhood of the origin. Let 91 = 2n * 8y, ¢p = 2n + 63; then 6] = 6y =
1 = 92 and

6 = 6, = 2E% + O(E) » (5.18)
Equations (5.15); (5.16), and (5.18) show that

81 = 8, > 0(w™v2) , (5.19)
From Equation (5.5) one has

Wpo_q % 20 4+ &g, (5.20)

in which

-

61 A~ 51 5 52 o 529 (Sozl)
Hence, from Equation (5.19)
Wop = @pn.y 7 &y = 85> O(a™V) - O(n’“’z) (5.22)

Equation (5.22) contradicts Equation (5.8). The argument starting from
Equation (5.7) is the same as the above excédpt that ¢, = 2n =1 + 6., ¢3 =

2n -1 + 63 and a contradiction is obtained to Equatien (S 9). The 4 ack of
dependence of the C23-1 on v follows from the finality of determination of
the 823, b2j-1 in Equations (5. 2) and (g Since there are infinitely
many wpn.}, @op > R and since wf 2VH2p 2V B are polynomials, Equation (5.10)
is true for all o ¥ 0. It is now possible to establish the following theorem
giving the asymptotic developments of the eigenvalues.

Theorem XVIII. g(6)(x) exists and is integra

ble




-‘-‘373 -

o wa)*  (W)*  (bn)

D2 . = D_h , Dév + 0(a=T),

w? )t b

DT D D¢
2 . _ Db . _Ds

. - + 0(n~T1),
a2)2 (-2t (une2)

Mo = (2n=1)2 +

- (lm-2)2 (un-z)h (hn-2)

in which

D2 = 1/x f gc dx,
Jo

a
D, = /n ] {g'? - 283} ax,
) JO

n : . :
Dg = 1/n j {Sgh - logg"z + 25&’"2} dx - 51})22.
Jo

Proof. Theorem XVII permits one to write

A(a?) = 2 cos mo + O(@"lé), (5.23)

=+ 02:]-1!., w=23*1 | (5.2h)

To determine wpp.]s @2n, one has the equation
sin? dw = 0(a"1), (5.25)

and hence,




¢ = 2n + O(w8),

Thus

@+ ng‘B + Cgmﬁs ¥‘C7m‘7 s 2n *‘O(m‘a)d
Let

© = 2n + ¢,
Then

&+ C3(2n+s)'3 + C5(2n+c)'5 + C7(2n+e)‘7 O(n‘e)
Equation (5.29) now yields

£ = - __(_3_3_ . Cs - QCBMEY . O(n‘8)
gnd 3205 128a7

One now obtains

Using the explicit values of C

To determine a)'2 7 w' on? one has the equation

cos? e = 0(w™19),

and hence, ¢ = 2n - 1 + 0(w8),

Iet w=2n-1+c¢,

Then one obtains

2
(2n-1)3 > (2m-1)T T T
One now obtains
.Y 20 SC + 20
A= (2ne1)? - BB ),

(2002 (20-1)8  (2men)®

(5.26)

(5527)

(5.28)

(5.29)

(5.30)

(5.31)

» C7 as given in Equation (L4.81), one ar-
rives at the asymptotic expa.nsions given in the theoren,

(5.32)
(5.33)
(5.3L)

(5.35)

(5.36)

Using the explicit values of C3, Cg, C7, one arrives at the asymptotic expan-

sions given in the Theorem.
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I, Conditions that g(x) be of Period n/2
In the present analysis, the differential Equation (1.1) will be replaced by
the family of equations

yr(x) + {h + g(x,0)}y(x) =0, (6.1)

ifi whieh

g(x;0) = 3 e120F g 127X | (6.2)
==

The function g(x) is given by @ = 0. It is clear, from Ig(x)] < M and the

periodicity of g(x) ; that 7‘|g_(i,e:):l§; M uniformly in x and 6., Consider the
sequences {Unlo , {Vy}o defined by

Up(x) = = 1/o sin f o(x=E)g(&)p.3(8)AE, Ug(x) = cosax, (6.3)

o

% |

v (%) = - 1w [ sin o(x=E)g(E)Vy 1(8)dE, Vo(x) = sinux/w, (6.4)
/6

t.henl

y1(x) = g U, (x), (6.5)

7o)+ Wy, (6.6)

B6P) = T by led) (6.7)
in which
8, (%) = Ugln) + V' y(n), (6.8)

A theorem of Mggnusl-’z shows that

8(u?) = io by(a?) + o(mr‘»-“‘lg""“?). (6.9)
s




A(e?) = 2 cos fiw + O(lwl =2 eMBy, (6.10)

5(w?) = 71(7/2) + y'5(x/2). (6.11)

Paralleling the derivation of Equations (6.9) and (6,10), one arrives at
similar results for A(w?). In particular,

iw

. 326(2r+1) Bopsl 3
A gi2e(ar+l) Z2r+l | (6.13)
2r+l

and

ie  ree 2r+1

)

+ 0(w 12 e MIBly,

Define the function D(w?,6) by
D‘(mz) g Q(G}z,e) + 2= K(mz,e)z. (6.18)
The following theorem will now be proved.

Theorem XIX, D(w?,8) = ofwi™l) 8opsp = == < r < =) wreal, The
estimate holding unifermly in 0. =T

Proof, If gops) = O(-= < r < «) then g(x) is of period n/2 and y,(x + n/2),
Yo(x + n/2) are solutions of Hill's equation,
Thus

¥y(n/2) yy(m/2) |y, (x) ‘: (6.16)

| 7o(n/2), 7',(n/2) | | ¥2(x) |




O B FACYP Y'i(‘ﬁ/?)-;z F(X)J (6.17)

l7ate/2), v,/2)] |30,

1 REAREESY

[ 72007 (6.18)
[ ?2(2) 1

[7,0/2, 3 w/]7 [0, 7'y (0]

j
i

| 7a(n/2), ¥ y(n/2)|

713"'2(11'). y' ()

One has

(6:19)

L7205 y'z("‘)f

Thus
8(a?,0) +203.(1/2)% + 31 (x/2)7 + 23" (W/2)7,(n/2) + 2. (6.20)
From the Wronskian

71(x)s  yp(x)

= yl(x)ylg(x) - Y'l(X) YQ(X) =1 ] (6021)

Y'l(x) ’ Y'z(X)‘

one obtains Zy"l(u/z)yz(n/z) = 2y, (n/2)y',(n/2) -2 . (6.22)

Hence A(a?,0) + 2 = [y (7/2) + y'5(w/2)12 = B(a?,0)% , (6,33)
Thus if gppey = O(=® < T < =), then D(w?,0) = 0 = o(lwl-1) , (6.3h)
Equations (6,10), (6.14), and (6,15) yield

D(oRg) » - 22210 T gi20(2re1) Ea_:_i + 0(w2) (6.25)
b4 r!!! =5 T -
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in which w is real. The condition D(m?,e) = o(lwi=1) implies that

= 126(2r+1) Bopey . "y
§— o128(2r*1) Zope1 . (6.26)
fas® 2r+l

for all 6. Hence, by the uniqueness theorem for Fourier series,
By = O(se T < =),

The next theorem preserts an interpolatory property of D(w?) which is inter=
esting because it follows from little quantitative information on mja

Theorem XX. All zeros w, of A(mé) + 2 are double and D(m,z) 2 02 < j < =)
ssssp> D(w?) 2 O. J J

Proof. Consider the integrals in the %-plane (X = & + iwm, &,7 real)

i(J ) = é / X —_= *—Q(EAA)’:'; dx‘i R (65 27)
5 (g-w)[a(gP)r2]

The paths Cj are squares to be defined below. If

1n 19 < o, (6.28)

jom

then one has, on application of the calculus of residues,

| » (6.29)

in which the series converges uniformly in every clesed bounded domain of the
w-plane. The theorem follows directly from Equation (6.29). It is only neces-
sary, therefore, to establish the validity of Equation (6.28).

From Equation (6.10) one has
8(e?) + 2 = L cos? % @ + 0(w™?) (6.30)

for real w. Thus,




-ho @

cos? g wy = 0=(mj“2) . (6.31)
let
oy = 23 =1+ ej5 (6,32)

Then
ey = 01917 Y, (6.33)
and hence

@y = 23 = 1v 00317 (6.34)

A considerably sharper result is availablé in Theorem XVIII; however, no more
than is given in Equation (6:34) will be needed. It therefore presents inde=
pendent interest that the crude estimate in Equation (6.30) suffices for the

£2- 25+ 0317, (6.35)
Let

are given by + 2. * iR

J J 3

(6.36)

in which

(2 "
pad [ 26D g g, (6.3
o ey (geo)la)e2) ’

1 % n?)
oni J2,  (2-0)[A(g2)+2]

dg, n = QJ,’ (6.38)

- =8 (ve
Y p— 1‘1(-.5)*;_ i,d'r',g = -Qj’ (6,39)

Somidy (gw)a(gd)e2]

2

% DD 4, n -

1
= ggj, (691‘0)

B = = o '
TR (g-w)[a(xP)+2]




e

Equation (6.25) shows that
B(e?) = 0(lwi~L &™H'). (6.42)
One has

L 8 52
) g [ ) an (6.12)
T oda g s an - allae?) ¢ 2

Since

18, +in - o) 2121 - lel 2 25 = 0(57Y) <1w1 (3> 0), (6.13)

oné may choose j so large that 23 = 0(;}‘1) = lwl > 0, then

LRy o2,
e | 3_ 1D N ‘ o bl
1 3 fagjlg(zz yeal

One has, from Equation (6.L1),
p(x%) = ogy1 =t MM, (6.45)

hence,

. (83 M
a0t it — an). (6.46)
L el

From Equations (6.10) and (6,35) one has

1a?) + 21 > o(e™™ (6,47)
for j large enough, hence

I, = o(3°}) (6.18)

and lm I = O,
jom

The integral I, follows exactly the same analysis so that one has also

3
. =] . -

I =0(3 and 1lim I, = O,
3 0(3°) an 3

Jae
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For the integral 12 one nas

B
11, < %n ) ‘““J£45531w~v-az .
93 el 18(22) 2]
Since

1g + in =wl3> |szJ

oné may choose j so large that 23;0(3‘1)alm\ > 0, then

2. N
I, =0fd J( §oAMEN gy,
T, = 95, -2, a2l

Using Equation (6.45), one obtains

2 32 |A(K2)+2‘

Since
Ay -1
‘COS '2' mjl > i_—,—z—_— {1 + O(j—l)},

one has

16(42) + 2] > 0(e2™)

for sufficiently large j uniformly in &, hence

I2 = 0(391-)’

and

lim I, = 0.
Jo=

F=tol > 25 = 0(3™%) =10y (3> 0),

(6.49)

(6.50)

(6651)

(6.52)

(6.53)

(605&)

(6.55)

Exactly the same analysis applies to I) so that I) = o(3™ ) and %in I, = 0.

The theorem is now established,
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